References

[1] Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

[2,3] Living Planet Report 2020 - Bending the Curve of biodiversity loss. https://livingplanet.panda.org/en-us/ (2020)

[4] WRI, 2015. Forests - Sustaining forests for people and planet. WRI topic http://www.wri.org/our-work/topics/forests

[5] Antonelli, A. et al. Protecting and sustainably using the world’s plants and fungi. PLANTS PEOPLE PLANET 2, 368–370 (2020).

[6] Heron, S. F., Maynard, J. A., Hooidonk, R. van & Eakin, C. M. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012. Sci. Rep. 6, 38402 (2016).

[7] Barnosky, A. D. et al. Approaching a state shift in Earth/’s biosphere. Nature 486, 52–58 (2012).

[8] Machovina, B., Feeley, K. J. & Ripple, W. J. Biodiversity conservation: The key is reducing meat consumption. Sci. Total Environ. 536, 419–431 (2015)

[9] Nepstad, D. C., Stickler, C. M., Filho, B. S.- & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737–1746 (2008)

[10] Steinfeld, H. et al. Livestock’s long shadow: environmental issues and options. (2006)

[11] Ten Brink, P., Kram, T., van Oorschot, M. & Arets, E. J. M. M. Rethinking Global Biodiversity Strategies: Exploring Structural Changes in Production and Consumption to Reduce Biodiversity Loss. (2010)

[12] Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

[13] UN-Water. Water Facts. UN-Water http://www.unwater.org/water-facts/ (2018).

[14] WWAP. The United Nations World Water Development Report: Water for a Sustainable World. (United Nations World Water Assessment Program, 2015)

[15] Fuller, R. Sustainable Agriculture - Links to International Development. 13 (WWF, 2010)

[16] Jagerskog, A. & Clausen, J. Feeding a thirsty world: threats and opportunities for water and food security. http://www.siwi.org/wp-content/uploads/2015/09/Feeding_a_thirsty_world_2012worldwaterweek_report_31.pdf (2012)

[17] FAO, IFAD, UNICEF, WFP, WHO. The State of Food Security and Nutrition in the World. http://www.fao.org/3/a-I7695e.pdf (2018)

[18] WWAP (United Nations World Water Assessment Programme). 2014. The United Nations World Water Development Report 2014: Water and Energy. Paris, UNESCO

[19] Jacobson, M. 2006. How a More Plant-Based Diet Could Save your Health and the Environment, Center for Science in the Public Interest, Pennsylvania State University, 2006 ISBN 0893290491

[20] Smith, J. W. et al. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front. (2013) doi:https://dx.doi.org/10.2527/af.2013-0002.

[21] Baroni, L., Cenci, L., Tettamanti, M. & Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 61, 279–286 (2006)

[22] Shepon, A., Eshel, G., Noor, E. & Milo, R. The opportunity cost of animal based diets exceeds all food losses. Proc. Natl. Acad. Sci. 115, 3804–3809 (2018).

[23] Jagerskog, A. & Clausen, J. Feeding a thirsty world: threats and opportunities for water and food security. http://www.siwi.org/wp-content/uploads/2015/09/Feeding_a_thirsty_world_2012worldwaterweek_report_31.pdf (2012)

[24] Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

[25] Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013)

[26] Peters, C. J. et al. Carrying capacity of U.S. agricultural land: Ten diet scenarios. Elem Sci Anth 4, (2016)

[27] Ercin, A., Aldaya, M. & Hoekstra, A. The water footprint of soy milk and soy burger and equivalent animal products. http://waterfootprint.org/media/downloads/Report49-WaterFootprintSoy.pdf (2011)

[28] Hoekstra, A. The hidden water resource use behind meat and dairy. http://waterfootprint.org/media/downloads/Hoekstra-2012-Water-Meat-Dairy.pdf (2012)

[29] Stocker, T., Qin, D., Plattner, G.-K. & Tignor, M. Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (IPCC, 2013)

[30] Goodland, R. & Anhang, J. Livestock and Climate Change: What if the key actors in climate change are cows, pigs and chickens? World Watch Magazine 10–19 (2009).

[31] Solomon, S et al. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (Intergovernmental Panel on Climate Change (IPCC), 2007

[32] Howarth, R. W. A bridge to nowhere: methane emissions and the greenhouse gas footprint of natural gas. Energy Sci. Eng. 2, 47–60 (2014)

[33] Myhre, G. et al. Anthropogenic and Natural Radiative Forcing. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 659–740 (Cambridge University Press, 2013).

[34] Montzka, S. A., Dlugokencky, E. J. & Butler, J. H. Non-CO2 greenhouse gases and climate change. Nature 476, 43–50 (2011).

[35] Bell, D, 2009. The Methane Makers, BBC News Magazine, 28 Oct 2009

[36] Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Change 4, 2–5 (2014)

[37] MIT Joint Program. Global Changes: MIT Joint Program on the Science & Policy of Global Change. https://globalchange.mit.edu/sites/default/files/newsletters/files/GlobalChanges-Spring2018.pdf (2018).

[38] Spratt, D. & Dunlop, I. What Lies Beneath: The Understatement of Existential Risk. http://climateextremes.org.au/wp-content/uploads/2018/08/What-Lies-Beneath-V3-LR-Blank5b15d.pdf (2018).

[39] WMO. The Global Climate in 2011-2015. http://ane4bf-datap1.s3-eu-west-1.amazonaws.com/wmocms/s3fs-public/1179_EN.pdf (2016)

[40] Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. 115, 8252–8259 (2018)

[41] UN Office of Disaster Risk Reduction. Droughts, the ‘Most Devastating’ Disasters, Set to Increase, Warn Climate Change Experts | Meetings Coverage and Press Releases. https://www.un.org/press/en/2013/iha1319.doc.htm (2013)

[42] Parry, M. L. Climate Change 2007: Impacts, Adaptation and Vulnerability : Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007)

[43] Global Humitarian Forum. Climate Change: The Anatomy of a Silent Crisis. http://www.ghf-ge.org/human-impact-report.pdf (2009)

[44] World Meteorological Office. Atlas of Mortality and Economic Losses from Weather and Climate Extremes 1970-2012. World Meteorological Organization https://public.wmo.int/en/resources/library/atlas-mortality-and-economic-losses-weather-and-climate-extremes-1970-2012 (2014)

[45] Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature (2014) doi:10.1038/nature13959.

[46] Scarborough, P. et al. Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK. Clim. Change 125, 179–192 (2014)

[47] Bryngelsson, D., Hedenus, F., Johansson, D. J. A., Azar, C. & Wirsenius, S. How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate? Energies 10, 182 (2017)

[48] Vuuren, D. P. van et al. Alternative pathways to the 1.5 °C target reduce the need for negative emission technologies. Nat. Clim. Change 8, 391–397 (2018).

[49] Dawe, A. LESS  IS MORE The Greenpeace vision of the meat and dairy system towards 2050 REDUCING MEAT AND DAIRY FOR A HEALTHIER LIFE AND PLANET, 2018

[50] Rao, S. K., Jain, A. K. & Shu, S. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests. in (American Geophysical Union, 2015)

[51] Stehfest, E. et al. Climate benefits of changing diet. Clim. Change 95, 83–102 (2009)

[52] Bradford, A. Deforestation: Facts, Causes & Effects. Live Science https://web.archive.org/web/20181215083913/https://www.livescience.com/27692-deforestation.html (2018)

[53] Arneth, A. et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nat. Geosci. 10, 79–84 (2017)

[54] McBain, B., Lenzen, M., Wackernagel, M. & Albrecht, G. How long can global ecological overshoot last? Glob. Planet. Change 155, 13–19 (2017).

[55] Sy, V. D. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015)

[56] WorldWatch Institute. Meat: Now, it’s not personal! but like it or not, meat-eating is becoming a problem for everyone on the planet. World Watch Magazine (2004)

[57] Sankaran, M. et al. Determinants of woody cover in African savannas. Nature 438, 846–849 (2005)

[58] Rao, S. K., Jain, A. K. & Shu, S. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests. in (American Geophysical Union, 2015)

[59] WWF. Soil Erosion and Degradation | Threats | WWF. World Wildlife Fund (2018). Available at: https://www.worldwildlife.org/threats/soil-erosion-and-degradation. (Accessed: 21st August 2018)

[60] IPBES. Assessment Report on Land Degradation and Restoration. (e Intergovernmental Science Policy Platform on Biodiversity and Ecosystem Services, 2018

[61] ELD Initiative. The Value of Land. (The Economics of Land Degradation Initiative, 2015)

[62] Schwartz, J. Soil as Carbon Storehouse: New Weapon in Climate Fight? Yale E360 https://e360.yale.edu/features/soil_as_carbon_storehouse_new_weapon_in_climate_fight (2014)

[63] Blume, H.-P. et al. Towards Sustainable Land Use: Furthering Cooperation Between People and Institutions Volume I and II. (Schweizerbart’sche, E., 1998)

[64] Arsenault, C. Only 60 Years of Farming Left If Soil Degradation Continues. Scientific American (2014)

[65] IPBES. Assessment Report on Land Degradation and Restoration. https://www.ipbes.net/assessment-reports/ldr (2018)

[66] UNCCD. The Global Land Outlook, first edition. (Secretariat of the United Nations Convention to Combat Desertification, 2017).

[67] Peters, C. J. et al. Carrying capacity of U.S. agricultural land: Ten diet scenarios. Elem Sci Anth 4, (2016)

[68] UNEP. Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials, A Report of the Working Group on the Environmental Impacts of Products and Materials to the International Panel for Sustainable Resource Management. (UNEP/Earthprint, 2010)

[69] Naam, R. The Infinite Resource: The Power of Ideas on a Finite Planet. (UPNE, 2013)

[70] Mood, A. & Brooke, P. Estimating the Number of Farmed Fish Killed in Global Aquaculture Each Year. (fishcount.org.uk, 2012)

[71] WWF. Living Blue Planet Report: Species, Habitats and Human Well-being. (WWF, 2015)

[72] Steinfeld, H. et al. Livestock’s long shadow: environmental issues and options. (2006)

[73] Keledjian, A. et al. WASTED CATCH: UNSOLVED PROBLEMS IN U.S. FISHERIES. (Oceana, 2014).

[74] Global Ocean Commission. The Future of Our Ocean: Next Steps and Priorities. (Global Ocean Commission, 2016)

[75] Stokstad, E. Global Loss of Biodiversity Harming Ocean Bounty. Science 314, 745–745 (2006)

[76] Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015)

[77] Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean Acidification: The Other CO2 Problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009)

[78] Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015)

[79] WWF. Living Blue Planet Report: Species, Habitats and Human Well-being. (WWF, 2015).

[80] Whitman, S. World’s Biggest Oxygen Producers Living in Swirling Ocean Waters. Eos Earth Space Sci. News (2017)

[81] Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010)

[82] Gerber, P. J. et al. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. xxi + 115 pp. http://www.fao.org/docrep/018/i3437e/i3437e.pdf (2013)

[83] Goodland, R. & Anhang, J. Livestock and Climate Change: What if the key actors in climate change are cows, pigs and chickens? World Watch Magazine 10–19 (2009)

[84] Rodale Institute. Regenerative Organic Agriculture and Climate Change: A Down-to-Earth Solution to Global Warming. http://rodaleinstitute.org/regenerative-organic-agriculture-and-climate-change/ (2014)

[85] Bryngelsson, D., Hedenus, F., Johansson, D. J. A., Azar, C. & Wirsenius, S. How Do Dietary Choices Influence the Energy-System Cost of Stabilizing the Climate? Energies 10, 182 (2017)

[86] Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

[87] UNEP, 2010. Sick Water: The central role of wastwater management in sustainable development. Presentation by Water and Energy Relief International https://www.slideshare.net/WERI/sick-water-screen-2-million-tons-of-sewage-industrial-and-agricultural-waste

[88] Sutton, M. A., Bleeker, A. & Howard, C. M. Our Nutrient World The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. (2013). Available at: http://www.fcrn.org.uk/research-library/climate-change/science-background/unep-report-our-nutrient-world.

[89] Puckett, L. J. Nonpoint and Point Sources of Nitrogen in Major Watersheds of the United States. http://pubs.er.usgs.gov/publication/wri944001 (1994).

[90] Lassaletta, L. et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand. Environ. Res. Lett. 11, 095007 (2016)

[91] Sutton, M. A., Howard, C. M. & Erisman, J. W. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. (Cambridge University Press, 2011)

[92] Desmit, X. et al. Reducing marine eutrophication may require a paradigmatic change. Sci. Total Environ. 635, 1444–1466 (2018)

[93] Spratt, D. & Dunlop, I. What Lies Beneath: The Understatement of Existential Risk. (Breakthrough, National Centre for Climate Restoration, 2018).

[94] Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. 115, 8252–8259 (2018).

[95] IPCC. Global Warming of 1.5 °C, an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. (Intergovernmental Panel on Climate Change, 2018).

[96] Climate Analytics, New Climate Institute, Ecofys. Climate Action Tracker. (2017). Available at: http://www.climateactiontracker.org/. (Accessed: 14th March 2019)

[97] Hallegate, S. et al. Shock Waves: Managing the Impacts of Climate Change on Poverty. (International Bank for Reconstruction and Development/ The World Bank Group, 2016).

[98] GHF. Climate Change: The Anatomy of a Silent Crisis. (Global Humanitarian Forum, 2009).

[99] Bondeau, A. et al. Turn down the heat : climate extremes, regional impacts, and the case for resilience - full report. 1–254 (The World Bank, 2013).

[100] EJF. No Place Like Home - Where Next for Climate Refugees. (Environmental Justice Foundation, 2008).

[101] Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature (2014) doi:10.1038/nature13959.

[102] GHF. Climate Change: The Anatomy of a Silent Crisis. http://www.ghf-ge.org/human-impact-report.pdf (2009).

[103] WWAP. The United Nations World Water Development Report: Water for a Sustainable World. (United Nations World Water Assessment Program, 2015).

[104] Pasqualino, R., Jones, A. W., Monasterolo, I. & Phillips, A. Understanding Global Systems Today—A Calibration of the World3-03 Model between 1995 and 2012. Sustainability 7, 9864–9889 (2015).

[105] Nelson, G. et al. Climate change: Impact on agriculture and costs of adaptation | IFPRI. http://www.ifpri.org/publication/climate-change-impact-agriculture-and-costs-adaptation (2009).

[106] Urquhart, G., Chomentowski, W., Skole, D. & Barber, C. Tropical Deforestation. https://earthobservatory.nasa.gov/Features/Deforestation/tropical_deforestation_2001.pdf (2001).

[107] McBain, B., Lenzen, M., Wackernagel, M. & Albrecht, G. How long can global ecological overshoot last? Glob. Planet. Change 155, 13–19 (2017).

[108] Urquhart, G., Chomentowski, W., Skole, D. & Barber, C. Tropical Deforestation. (NASA Earth Observatory Reference, 2001).

[109] Nepstad, D. C., Stickler, C. M., Filho, B. S.- & Merry, F. Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point. Philos. Trans. R. Soc. B Biol. Sci. 363, 1737–1746 (2008).

[110] Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

[111] Hopkin, M. Past century sees biodiversity dive. Nat. News (2005). doi:10.1038/news050516-14

[112] Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

[113] Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. 114, E6089–E6096 (2017).

[114] Turner, B. L., Lambin, E. F. & Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. U. S. A. 104, 20666–20671 (2007).

[115] Parry, M. L. Climate Change 2007: Impacts, Adaptation and Vulnerability : Working Group II Contribution to the Fourth Assessment Report of the IPCC Intergovernmental Panel on Climate Change. (Cambridge University Press, 2007).

[116] Stokstad, E. Global Loss of Biodiversity Harming Ocean Bounty. Science 314, 745–745 (2006).

[117] Steffen, W. et al. Planetary boundaries: Guiding human development on a changing planet. Science 347, 1259855 (2015).

[118] Sutton, M. A., Bleeker, A. & Howard, C. M. Our Nutrient World The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. (2013). Available at: http://www.fcrn.org.uk/research-library/climate-change/science-background/unep-report-our-nutrient-world. (Accessed: 15th March 2013)

[119] Smil, V. Should We Eat Meat: Evolution and Consequences of Modern Carnivory. (Wiley-Blackwell, 2013).

[120] https://skepticalscience.com/

[121] Arguments from Global Warming Skeptics ranked by popularity. Skeptical Science https://skepticalscience.com/argument.php?f=percentage.

[122] Maslin, M. Five climate change science misconceptions – debunked. The Conversation http://theconversation.com/five-climate-change-science-misconceptions-debunked-122570.

[123] Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

[124] Ripple, W. et al. COMMENTARY: Ruminants, climate change and climate policy. Nat. Clim. Change 4, 2–5 (2013).

[125] Nisbet, E. G. et al. Very Strong Atmospheric Methane Growth in the 4 Years 2014–2017: Implications for the Paris Agreement. Glob. Biogeochem. Cycles 33, 318–342 (2019).

[126] Sy, V. D. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).

[127] Austin, K. G., Schwantes, A., Gu, Y. & Kasibhatla, P. S. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).

[128] Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. 201711842 (2018) doi:10.1073/pnas.1711842115.

[129] FAO. FAOSTAT Gateway. http://faostat3.fao.org/faostat-gateway/go/to/home/E.

[130] Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

[131] Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

[132] Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

[133] Avetisyan, M., Hertel, T. & Sampson, G. Is Local Food More Environmentally Friendly? The GHG Emissions Impacts of Consuming Imported versus Domestically Produced Food. Environ. Resour. Econ. 58, 415–462 (2014).

[134] Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4, 924–929 (2014).

[135] Dawe, A. LESS  IS MORE The Greenpeace vision of the meat and dairy system towards 2050 REDUCING MEAT AND DAIRY FOR A HEALTHIER LIFE AND PLANET

[136] Tirado, R., Thompson, K., Miller, K. A. & Johnston, P. Reducing meat and dairy for a healthier life and planet - Scientific background on the Greenpeace vision of the meat and dairy system towards 2050. https://www.greenpeace.org/international/publication/15093/less-is-more/ (2018).

[137] Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B. & Canadell, J. G. The growing role of methane in anthropogenic climate change. Environ. Res. Lett. 11, 120207 (2016).

[138] Longmire, A., Taylor, C. & Wedderburn-Bisshop, G. Land Use: Agriculture and Forestry Discussion Paper. http://bze.org.au/land-use-agriculture-and-forestry/ (2014).

[139] Ten Brink, P., Kram, T., van Oorschot, M. & Arets, E. J. M. M. Rethinking Global Biodiversity Strategies: Exploring Structural Changes in Production and Consumption to Reduce Biodiversity Loss. (2010).

[140] Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

[141] Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

[142] Hayek, M. N. & Garrett, R. D. Nationwide shift to grass-fed beef requires larger cattle population. Environ. Res. Lett. 13, 084005 (2018).

[143] Rizvi, S., Pagnutti, C., Fraser, E., Bauch, C. T. & Anand, M. Global land use implications of dietary trends. PLOS ONE 13, e0200781 (2018).

[144] Rioba, B. Dried-up pastures push Kenya’s Maasai to mix cattle with crops. Reuters (2019).

[145] Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122 (2019).

[146] Wirsenius, S., Azar, C. A. & Berndes, G. How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030? Agric. Syst. 103, 621–638 (2010).

[147] UNCCD. The Global Land Outlook, first edition. https://knowledge.unccd.int/glo (2017).

[148] Mottet, A. et al. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 14, 1–8 (2017).

[149] FAO. FAO Yearbook. Fishery and Aquaculture Statistics 2016/FAO annuaire. Statistiques des pêches et de l’aquaculture 2016/FAO anuario. Estadísticas de pesca y acuicultura 2016. (FAO, 2018).

[150] Foresight. Foresight. The future of food and farming. Final project report. 127–127 http://www.bis.gov.uk/assets/bispartners/foresight/docs/food-and-farming/11-546-future-of-food-and-farming-report.pdf (2011).

[151] Leip, A., Weiss, F., Lesschen, J. P. & Westhoek, H. The nitrogen footprint of food products in the European Union. J. Agric. Sci. 152, 20–33 (2013).

[152] Sutton, M. A., Bleeker, A. & Howard, C. M. Our Nutrient World The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative. http://www.fcrn.org.uk/research-library/climate-change/science-background/unep-report-our-nutrient-world (2013).

[153] Smil, V. Should We Eat Meat: Evolution and Consequences of Modern Carnivory. (Wiley-Blackwell, 2013).

[154] Garnett, T. et al. Grazed and confused? http://www.fcrn.org.uk/sites/default/files/project-files/fcrn_gnc_report.pdf (2017).

[155] Myhre, G. et al. Anthropogenic and Natural Radiative Forcing. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 659–740 (Cambridge University Press, 2013).

[156] Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. 201711842 (2018) doi:10.1073/pnas.1711842115.

[157] FAO. FAOSTAT Gateway. http://faostat3.fao.org/faostat-gateway/go/to/home/E.

[158] Cassidy, E. S., West, P. C., Gerber, J. S. & Foley, J. A. Redefining agricultural yields: from tonnes to people nourished per hectare. Environ. Res. Lett. 8, 034015 (2013).

[159] Steinfeld, H. et al. Livestock’s long shadow: environmental issues and options. (2006).

[160] Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

[161] FAO. FAOSTAT Gateway. http://faostat3.fao.org/faostat-gateway/go/to/home/E.

[162] HSI. The impact of industrial farm animal production on food security in the developing world. http://www.hsi.org/assets/pdfs/hsi-fa-white-papers/the_impact_of_industrial_farm.pdf (2011).

[163] Baroni, L., Cenci, L., Tettamanti, M. & Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 61, 279–286 (2006).

[164] Baroni, L., Cenci, L., Tettamanti, M. & Berati, M. Evaluating the environmental impact of various dietary patterns combined with different food production systems. Eur. J. Clin. Nutr. 61, 279–286 (2006).

[165] West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).

[166] Hoekstra, A. The hidden water resource use behind meat and dairy. http://waterfootprint.org/media/downloads/Hoekstra-2012-Water-Meat-Dairy.pdf (2012).

[167] Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

[168] Rao, S. K., Jain, A. K. & Shu, S. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests. in (American Geophysical Union, 2015).

[169] Passant, R. & Astronomy. NASA Satellites Confirm Amazon Rainforest Is Burning at a Record Rate. Space.com https://www.space.com/amazon-rainforest-fires-2019-nasa-satellite-views.html (2019).

[170] Voiland, A. Uptick in Amazon Fire Activity in 2019. https://www.earthobservatory.nasa.gov/images/145498/uptick-in-amazon-fire-activity-in-2019 (2019).

[171] INPE. Statistics of states and regions - Burn Program - INPE. Brazil National Institute for Space Research, Active Fire Monitoring by Country 

[172] Archer, M. Ordering the vegetarian meal? There’s more animal blood on your hands. The Conversation (2011).

[173] DSITIA. Land cover change in  Queensland 2009–10: Statewide Landcover and Trees Study Report. www.derm.qld.gov.au/slats (2012).

[174] Olsen, P., Weston, M., Tzaros, C. & Silcocks, A. The State of Australia’s Birds: Woodlands and Birds. https://www.birdlife.org.au/documents/SOAB-2005.pdf (2005).

[175] Stevens, W. Declining Biodiversity and Unsustainable Agricultural Production-Common Cause, Common Solution? 

[176] Simmonds, J. S., Watson, J. E. M., Salazar, A. & Maron, M. A composite measure of habitat loss for entire assemblages of species. Conserv. Biol. 33, 1438–1447 (2019).

[177] Ward, M. S. et al. Lots of loss with little scrutiny: The attrition of habitat critical for threatened species in Australia. Conserv. Sci. Pract. 1, e117 (2019).

[178] Smith, K. R., Desai, M. A., Rogers, J. V. & Houghton, R. A. Joint CO2 and CH4 accountability for global warming. Proc. Natl. Acad. Sci. (2013). doi:10.1073/pnas.1308004110

[179] About Methane. Global Methane Initiative background brief, 2016 from https://www.globalmethane.org/about/methane.aspx

[180] Bailey, R., Wellesley, L. & Froggatt, A. Livestock – Climate Change’s Forgotten Sector: Global Public Opinion on Meat and Dairy Consumption. https://www.chathamhouse.org/publication/livestock-climate-change-forgotten-sector-global-public-opinion-meat-and-dairy (2014).

[181] Smil, V. Harvesting the Biosphere: What We Have Taken from Nature. (MIT Press, 2013).

[182] Smil, V. Nitrogen and food production: proteins for human diets. Ambio 31, 126–131 (2002).

[183] Hertwich, E. et al. Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials.  A Report of the Working Group on the Environmental Impacts of Products and Materials to the International Panel for Sustainable Resource Management. (2010).

[184] Machovina, B., Feeley, K. J. & Ripple, W. J. Biodiversity conservation: The key is reducing meat consumption. Sci. Total Environ. 536, 419–431 (2015).

[185] Henry, R. C. et al. The role of global dietary transitions for safeguarding biodiversity. Glob. Environ. Change 58, 101956 (2019).

[186] Pimentel, D. & Pimentel, M. Sustainability of meat-based and plant-based diets and the environment. Am. J. Clin. Nutr. 78, 660S-663S (2003).

[187]  Kopp, R. E., Shwom, R. L., Wagner, G. & Yuan, J. Tipping elements and climate–economic shocks: Pathways toward integrated assessment. Earths Future 4, 2016EF000362 (2016).

[188] Weber, C. L. & Matthews, H. S. Food-Miles and the Relative Climate Impacts of Food Choices in the United States. Environ. Sci. Technol. 42, 3508–3513 (2008).

[189] Hawken, P. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. (2017).

[190] Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. 114, 11645–11650 (2017).

[191] Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 0, (2019).

[192] IPCC. Global Warming of 1.5 °C, an IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. http://www.ipcc.ch/report/sr15/ (2018).

 

Our site uses cookies, which helps us to improve our site and enables us to deliver the best possible service and customer experience. Find out more